Nucleon structure functions from lattice operator

product expansion

G. Schierholz

Deutsches Elektronen-Synchrotron DESY



With

A. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. Rakow, A. Schiller,
K. Somfleth, R. Young, J. Zanotti

QCDSF Collaboration

arXiv:1703.01153




[Classical Approachj

e Moments Mellin transform
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e The computations are limited to a few lower moments, due to issues of operator mixing and
renormalization. Even so, the uncertainties are at least comparable to the magnitude of the
power corrections
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[ OPE without OPE |

Mother of all: Compton amplitude
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[From T55 to p,, and Fl(x,q2)j

The Compton amplitude can be computed most efficiently, including singlet (disconnected)
matrix elements, by the Feynman-Hellmann technique. By introducing the perturbation to the
Lagrangian

L(z) = L(x) + AT5(x), T3(x) = Zy cos(q7) e, q(x)v3q(x)

and taking the second derivative of (N (5, t)N(5,0)), ~ Cye “APDT with respect to A
on both sides, we obtain
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The amplitude encompasses the dominating ‘handbag’
diagram as well as the power-suppressed ‘cats ears’

diagram. Varying ¢ will allow to test the twist expan-
sion. No further renormalization is needed



Moments

Task: Compute the lowest M moments lodd moments need (p, X|TJM(90)J5(O) D, A)]
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from a finite number of sampled points
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Compton amplitude and moments are connected by the set of equations
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Solutions are well documented in the literature. Alternatively, we can fit the Compton amplitude

by the interpolating polynomial
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Structure function

Ultimate goal: Compute F(x) from T55(w). Therefor we discretize the integral

t, = € Z K,.fm, n=1,--+- N [here: points equidistant with step size €]
with
4wiacm

1 — (w,x,,)?’
The N X M matrix K is written
K = U [diag(wy, - ,wy)] V'
where W is singular' wy, ~ 0, K < k < N. Solution by singular value decomposition (SVD)
Z K 1 g

with K~ belng the pseudoinverse

K '=V [diag(1/wy, -+ ,1/wg,0, ,0)] U Mathematica



[Proof of Conceptj
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F,(x) at very small x? Needs w > 1
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[Lattice Study]

SU(3) symmetric point
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LOutIookj

Computations can be improved in many — Apply Bayesian regression with SVD to
respects alleviate overfitting

— Employ momentum smearing techniques
for larger values of w

With gradual improvements, we should be able to compute the structure functions
Fy(x,q?) and Fy(x, q¢%), as well as g;(x, ¢*) and g,(x, ¢*), including contributions
of higher twist, from the Compton amplitude with unprecedented accuracy

This is possible, because the calculation skirts the issue of renormalization and operator
mixing

The method can easily be generalized to generalized parton distribution functions (GPDs)
H(z, &, q%) and E(z, €, q°)



