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Classical Approach

• Moments Mellin transform
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• OPE
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• The computations are limited to a few lower moments, due to issues of operator mixing and

renormalization. Even so, the uncertainties are at least comparable to the magnitude of the

power corrections

Martinelli & Sachrajda
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OPE without OPE

Mother of all: Compton amplitude

Tµν(p, q) = ρλλ′
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For p3 = q3 = q4 = 0
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) = 4ω
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includes power corrections
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From T33 to µn and F1(x, q

2)

The Compton amplitude can be computed most efficiently, including singlet (disconnected)

matrix elements, by the Feynman-Hellmann technique. By introducing the perturbation to the

Lagrangian

L(x) → L(x) + λJ3(x) , J3(x) = ZV cos(~q~x) eq q̄(x)γ3q(x)

and taking the second derivative of 〈N(~p, t)N̄(~p, 0)〉λ ≃ Cλ e
−Eλ(p,q) t with respect to λ

on both sides, we obtain

−2Eλ(p, q)
∂2

∂λ2
Eλ(p, q)

∣

∣

λ=0
= T33(p, q)

The amplitude encompasses the dominating ‘handbag’

diagram as well as the power-suppressed ‘cats ears’

diagram. Varying q2 will allow to test the twist expan-

sion. No further renormalization is needed



Moments

Task: Compute the lowestM moments
[

odd moments need 〈p, λ
′
|TJµ(x)J

5
ν(0)|p, λ〉

]

µ2m−1 =

∫ 1

0

dx x
2m−1

F1(x)

from a finite number of sampled points

tn = T33(ωn) , n = 1, · · · , N

Compton amplitude and moments are connected by the set of equations
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Vandermonde M

Solutions are well documented in the literature. Alternatively, we can fit the Compton amplitude

by the interpolating polynomial

T33(ω) = 4
(

ω
2
µ1 + ω

4
µ3 + · · · + ω

2M
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)



Structure function

Ultimate goal: Compute F1(x) from T33(ω). Therefor we discretize the integral

tn = ǫ

M
∑

m=1

Knmfm , n = 1, · · · , N [here: points equidistant with step size ǫ]

with

fm = F1(xm) , Knm =
4ω2

nxm

1 − (ωnxm)2
, N < M

The N × M matrix K is written

K = U [diag(w1, · · · , wN)] V
T

where W is singular: wk ≈ 0, K < k ≤ N . Solution by singular value decomposition (SVD)

fm =

N
∑

n=1

K
−1
mnǫ

−1
tn

with K−1 being the pseudoinverse

K
−1

= V [diag(1/w1, · · · , 1/wK, 0, · · · , 0)] U
T

Mathematica
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Proof of Concept
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F1(x) at very small x? Needs ω > 1 Not accessible via moments
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Lattice Study

SU(3) symmetric point

V Mπ MK a [fm] q2 [GeV2]

323 × 64 420 420 0.075 9.2

J3(x) = ZV cos(~q~x) ed d̄(x)γ3d(x)
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Outlook

• Computations can be improved in many

respects

– Apply Bayesian regression with SVD to

alleviate overfitting

– Employ momentum smearing techniques

for larger values of ω

• With gradual improvements, we should be able to compute the structure functions

F1(x, q
2) and F2(x, q

2), as well as g1(x, q
2) and g2(x, q

2), including contributions

of higher twist, from the Compton amplitude with unprecedented accuracy

• This is possible, because the calculation skirts the issue of renormalization and operator

mixing

• The method can easily be generalized to generalized parton distribution functions (GPDs)

H(x, ξ, q2) and E(x, ξ, q2)


