Outline

® Lattice field theory:

- Quantum Mechanics with Path Integral  (demo)
- Lattice ¢*

- Scalar QED — QCD

» ® Monte Carlo

® Finite temperature: Y-M deconfinement transition

® Fermions:

Continuum symmetries

Species doubling

Numerical simulation

Finite temperature

® Finite chemical potential:

- Expectations
- Sign problem

- Imaginary chemical potential



® To compute: Z:/Hd:ciexp[—S({azi})], (W) /Hdaﬁz ({zi}) exp|=S({z:})]

ie. [ratios of] high-dimensional integrals
® Simpson’s (trapezoidal) rule: systematic error O(h*),h ~ n=1/¢ n ~CPU, ie.error ~ CpU /¢

Also: trapezoidal rule in high-dimension? nb. points per dim.< 2 ?

1
vCPU

® How tosample Z = Z exp|—S(state)] ?

states

® Stochastic method: - unbiased estimator (systematic error = 0) } beats Simpson’s rule

- statistical error ~ when d > 6

in any dimension d

- Random sampling: Pick states with uniform probability, give them weight exp(—J95)
- —>

— ]
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- Importance sampling: Pick states with probability exp‘(V—S) , give them uniform weight




1
DE= — E i , € =W, — ; €= — 0
® Monte Carlo error: € - W, — (W), =W, — (W), ¢ €

® Moments of the error:

- error is unbiased: {e) =0

- () = (%Z@) = %Zéz‘?j

n

® Cf. central limit theorem:

uncorrelated
measurements




Pre-history of Monte Carlo

® Pascal —— Fermat, 1654: “Problem of Points” (cf. Chevalier de Méré, gambler)

Pascal triangle

\
Buffon: 1777, Buffon’ needle problem Prob(intersect) = % IL / y

y
\/\

(also “noodle problem”)

AN

Bayes: 763, statistical inference

Laplace: 1812, “Theorie analytique des probabilites”
Brown: 1828, pollen grains on water

Manhattan project: 1942-46, ‘“neutron transport” (scattering, absorbtion, fission)



APS News
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July 1654: Pascal’s Letters to Fermat on the “Problem of Points”

Games of chance are as ancient as human history,
with archaeologists unearthing evidence of them on
prehistory digs. Gambling also led, indirectly, to the
birth of probability theory, as players sought to better
understand the odds. In the mid-17th century, an ex-
change of lefters between two prominent mathema-
ticians—Blaise Pascal and Pierre de Fermat—laid the
foundation for probability, thereby changing the way
scientists and mathematicians viewed uncertainty
and risk.

Born in 1623 in Clermont-Ferrand, France, Pas-
cal was a child prodigy largely educated by his fa-
ther, Etienne, a local magistrate who was also well-
connected with some of the most famous intellectu-
als of that era, including Rene Descartes and Pierre
de Fermat. As a result, young Blaise
was privileged to sit in on salon-
style meetings of some of the great-
est minds in Europe. At age 11,
he wrote an essay on the sounds
of vibrating bodies; the following
year, he devised his own proof that
the sum of the angles of a triangle
equals two right angles.

By the time he was 16, Pas-
cal had progressed sufficiently in
his mathematical studies to write
a (reatise on conic sections, giving
rise to what we now call Pascal’s
Theorem, which states that if a hexagon is inscribed
in a conic section, then the three intersection points
of opposite sides lie on a straight line. One indication
of how impressive this achievement was is the fact
that Descartes, when shown the paper, initially did
not believe the young teenager had written it.

When Pascal’s father became king’s commission-
er of taxes in Rouen and was struggling with end-
less calculations and re-calculations, Pascal-not yet
19—invented a mechanical calculator for adding and
subtracting to ease his father’s task, which became
known as the Pascaline. By 1646, he had become
interested in Evangelista Torricelli’s experimentation
on barometers, performing definitive experiments to
demonstrate the existence of a vacuum. The SI unit
of pressure is the pascal, in his honor.

In 1654, a French essayist and amateur mathema-
tician named Antoine Gombaud, who was fond of
gambling, found himself pondering what is known
as “the problem of points.” It was first proposed in
1494 by an Italian monk named Luca Paccioli in his
treatise Summa de Arithmetica, Geometrica, Pro-
portioni et Proportionalita. In the game of balla, for
example, six goals are needed to win the game. The
question posed by Paccioli was how one should di-
vide the winnings if the game is interrupted when
one player has five goals and the other has three
goals? The player with five goals should have a larg-
er share, but how much larger should his share be?

Gombaud turned to Pascal, who had taken up
gambling when his doctors advised him to abandon
mental exertions for the sake of his health, The year
before, Pascal had worked out the principles of ““Pas-
cal’s Triangle,” a method for determining the bino-
mial coeflicients for a given value of (a+b)*similar
to a method devised some 400 years earlier by Chi-
nese mathematician Yang Hui.

Intrigued, Pascal realized he would need to in-
vent a new method of analysis to solve the puzzle,
since the solution would need to reflect each player’s
chances of victory given the score at the time the
game was interrupted. Thus began his legendary cor-
respondence with fellow mathematician Pierre de
Fermat that, over the course, of several weeks, laid
the foundation for modern probability theory. Their
respective methods involved listing all the possibili-
ties, and then determining the proportion ef time that
each player would win, in order to solve it.

Fermat’s approach rested on a complete enu-
meration of the possible outcomes. For example, if
the winner of a coin toss game needs to win the best
of five tosses, and one player is ahead 2 to 1 when
the game is interrupted, Fermat rea-
soned there would be four possible
outcomes had the game continued.
Three of those four favor the player
with the edge; ergo, he should win
three-fourths of the pot. A sticking
point is a counter-argument using
a different scheme of counting that
only finds three possible outcomes
instead of four.

Pascal’s approach sidestepped
this issue by devising an algorithm
employing what is now known as
induction and incursion. It involves
a logical cycle of playing out each possible out-
come for each successive round, starting from the
point where the game was interrupted. Once the end
state is reached, it is then possible to work backward
through the intermediate steps and assign a number
to the probability of winning for each player at the
point when the game was interrupted, and the pot
would be divided accordingly.

Pascal’s analysis stopped short of considering
less idealized situations where a finite number of
equally likely possible outcomes could not be list-
ed, such as the weather, or the stock market. By the
early 18th century, Jakob Bernoulli had devised the
law of large numbers in an attempt to provide a for-
mal proof that uncertainty decreases as the sample
size increases for problems with an infinite num-
ber of outcomes. Other developments by leading
scientists and mathematicians followed, ultimately
transforming economics, actuarial science, and the
social sciences.

A few weeks after his last correspondence with
Fermat, Pascal narrowly escaped death when his
carriage nearly ran off a bridge, prompting a re-
ligious conversion. He switched his focus from
math and science to philosophical and religious
treatises, and renounced games of chance. He did
an occasional bit of math: between 1658 and 1659
he explored the cycloid and how it might be used
to calculate the volume of solids, for example.

His carly work on probability seeped into his
philosophical work as well, most notably the fa-
mous “Pascal’s Wager,” wherein he reasoned that
the odds favor belief in God, even though God’s
existence cannot be definitively proven. Pascal
died of a brain hemorrhage on August 19, 1662,
just before his 39th birthday. History has yet to re-
cord the outcome of his wager.




Parallel histories

Theoretical Simulations

Path integral: Feynman 1948 Manhattan project: 1942-1946

Von Neumann, Ulam, Metropolis, Fermi

Imaginary time: Wick 1954
Fermiac (dedicated MC analog computer): 1947

(Eniac, Maniac, llliac,...)
Renormalization: 60’s -- 70’s

First Monte Carlo symposium: 1949 (pub. 1951)
Asymptotic freedom: Gross & Wilczek, Politzer 1973 Metropolis algorithm: 1953

Lattice gauge theory: Wilson 1974

Lattice Monte Carlo study of SU(2) : Creutz 1980

Hybrid Monte Carlo (quarks) : Duane et al. 1987

Nowadays: collaboration LQCD <— industry (IBM/Columbia U. ; Fujitsu/JLQCD)



Stanislaw Ulam with FERMIAC

THE FERMIAC

The Monte Carlo trolley, or FERMIAC, was
invented by Enrico Fermi and constructed
by Percy King. The drums on the trolley
were set according to the material being tra-
versed and a random choice between fast
and slow neutrons. Another random digit
was used to determine the direction of mo-
tion, and a third was selected to give the dis-
tance to the next collision. The trolley was
then operated by moving it across a two-
dimensional scale drawing of the nuclear
device or reactor assembly being studied.
The trolley drew a path as it rolled, stopping
for changes in drum settings whenever a
material boundary was crossed. This infant
computer was used for about two years to
determine, among other things, the change
in neutron population with time in numerous
types of nuclear systems.



ABC of MC

® Construct Markov chain:

At each Monte Carlo step, Prob(next state) depends on current state only (not on past history)

® Take finite Hilbert space (size \/) for simplicity

= Prob(state 1)
After Monte Carlo step k, Prob(state ¢, i = 1..N') forms vector v* = | v} = Prob(state 2)

® U s obtained from " by application of Markov matrix M :  M;; = Prob(state ©« — state 7)

vt = ka Prob(state j — state i) = vt = M7y
J

® Properties of [non-symmetric] Markov matrix: ~ M;; > 0

Z M;; = 1 Vi (from 7, one always goes somewhere) = eigenvalues A <1 (Frobenius)
J

M 1 _ 1 — M has atleast one eigenvalue )\ = ]



Convergence of Markov chain

® /[ has at least one eigenvalue A = 1 = Every Markov chain has a stationary prob. distribution

ie. 3 v°° such that M1 p>® = > : Vi, ZProb(State j — state i) v5° = v7°  “balance eq”

J

k+1 T, k . : : :
o vl =M"" i contracting map for eigenmodes with |A| <1
A =1 is the only magnitude-| eigenvalue, V" — v> such that M1 p>® = >
— 00

® Necessary and sufficient conditions:

- ergodicity (well-known): Vi, j, 3k such that (M"*);; >0
No two states are unreachable from each other

- regularity (not well-known): 3k such that Vi, 7, (M’l“)zt7 > () (example)

® Rate of convergence to stationary distribution v : second largest eigenvalue A1 of M
Damping of associated eigenmode after k steps: A¥ = exp(klog A1) = exp(—k/Texp)

Texp = —1/10g A1 is “exponential autocorrelation time” (cf. thermalization time)



Detailed balance and Metropolis algorithm

® In practice, v°° is given (Boltzmann weight). How to design Markov matrix M ?

Sufficient condition: “detailed balance”, ie. Vi, 7, —

Mj' V°

1

® Detailed balance ——> balance (+ assume ergodicity & regularity)

M, ; L
:L — Mz'j?JZQO:MjZ’UQO — ZMT”UOO:(ZM]Z)”U;O

Mj; v D A
N——
1
® Metropolis algorithm satisfies detailed balance:

M;; = Prob(candidate j|i) x Prob(accept j)
min(1,v5°/v?) . Mij _ 1 % ﬁ
M ;; = Prob(candidate i|j) X ?rob(accept z)j i v

min(1,09° /v5°)

- Normalization 1 /7 of v°° not needed

-With j = Tranda 04, i =T, 407, need Prob(Tiamq) = Prob(T. 1))



1/6

[Example) 3 states; V= | 1/3
1/2
1 —2a — 3b 2a 3b
Detailed balance — P = a l—a— %c %c
b C 1—-b—c

eg. a =0.1,b=c=0.01 — A\; =0.96035, Teyp = —1/In); = 24.72

(Observables) Wi =6(z,3) (W) =3);
Wa =30(z,1) — 6(x,3) ((Wy) =0)

T T I T L] ] i I T I T T ] I 1 1] I I I T 1 I B
tocorrelation W; and W,

C(t) = (W(s) W(s+1t)), — (W)

Normalized: p(t) = g((é)) in [—1,+1]




Integrated autocorrelation time Tint(W):

time necessary between ~~ independent measurements

1 @)
® Definition:  Tint = 5 + Z p(t)  -- depends on observable
t=1

® If ,O(t) ~ e_t/T, then / dt p(t) — T = Tint — Texp
0

® Typically, p(?)decreases quickly at small ¢ ,and has long noisy tail

O
— truncate Z . Tint ™
t=1

1.0 T T

0.8 -

Wy =6(z,3) (W) =2);
Wy = 36(z,1) — 6(z,3) ((Wa) = 0)

p(t)
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M
+ Zp(t), self-consistency: M > 37,
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1/6
[Examplea 3 states; V> = | 1/3 Again
1/2
1 —2a—3b 2a 30
Detailed balance — P = a 1—a—3c 2¢
b C 1-b—c

eg. a =0.1,b=c=0.01 — A\; =0.96035, Teyp = —1/InA; = 24.72

[Increase hopping prob. a, b, c to decrease Tewp,ma

0 0 1
Limiting case: a =0,b=1/3,¢c=2/3 - P = 0 0 1
1/3 2/3 0

(s even — (P*)13 = 0;5 odd — (P®)11 =0), Eigenvalues {1, 1,0}



Local updates: Metropolis and alternatives

® Monte Carlo program: perform many “sweeps”

- Each sweep: loop over all degrees of freedom (eg. ¢(z), U, (x)) and update one at a time

- Measure observables after fixed number of sweeps A
P_(x.)
11

® Update algorithms (can/should mix for better decorrelation):

- Metropolis (can perform several “hits” on each d.o.f.)

- Heatbath:  Prob(i — j) = v%°

- Old state 7 is forgotten — better decorrelation
(cf. Metropolis with nhits = co0) A

- Feasible for simple distributions ¥~ only:
Gaussian, exponential, uniform,...

- Over-relaxation:
Metropolis with deterministic j = T o i, T? = 1(ie. reflection)

Xold

HB

OR

- Excellent when feasible ( v;° almost Gaussian)

® Consider the possibility of subgroup update (esp. SU(2) C SU(3))






Outline

® Lattice field theory:

- Quantum Mechanics with Path Integral  (demo)
- Lattice ¢*

- Scalar QED — QCD

® Monte Carlo
» ® Finite temperature: Y-M deconfinement transition

® Fermions:

Continuum symmetries

Species doubling

Numerical simulation

Finite temperature

® Finite chemical potential:

- Expectations
- Sign problem

- Imaginary chemical potential



Finite temperature: the Columbia plot
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Projection of (M, =mq, ms, 1) phase diagram of QCD



® Physical expectations:

-Atlow 1’ quarks are confined. Excitations are color-singlet bound-states of quarks and gluons

- At high I’ typical scattering energy is ~ 1. By asymptotic freedom, g(T') _— 0

® Recall thermal boundary conditions:

- Euclidean time is compact: 7 € [0,5 =1/T] _Ll_’/_\_ |

- Bosonic fields are periodic: ¢(z, ) = ¢(x,0) ST T
-

B
—> New closed loop: Polyakov loop (Wilson line) L(z) = Us(x, ) ZGXP(@'Q/ drAo(z, 7))
0

T=1,N-

TrL(xz) is gauge-invariant (and independent of starting 7 )

Physical meaning: L(:L’) is worldline of static color charge (cf. quark)



® Compare system containing charge-anticharge

L

7 . 1/T
with empty system: %% —exp [ ——F, . (R)
Z0 T

® Express ratio as expectation value: +

! r " exp(—Sym
exp (_ 1Fq (R)) _ J DU TrL(0) TrL(R)" exp(—Sym(U))

T d fDU exp(—SYM(U))
= (TrL(0) Tr*L(R))z, —  [TrL)"

® If (Trl) =0, then F,;(R) — +oo, ie. confinement

R— o0

® If (IrL) # 0, then F z(R) — finite, ie. deconfinement

R— o0




® When T'=0, (TrL) =0 (confinement).

When T — oo, g(T) - 0 = [(TrL)| — 1 (free theory)

Plausible: 3 7. such that |[{(TrL)| = 0, [{TrL)| > 0, je. deconfinement transition
T<T. T>T.

® Phase transition is found: [ second-order (f infinite) for SU(Z) Yang-Mills

first-order ( £ finite) for SU(N), N > 2

® Hand-waving explanation: entropy mismatch at /., —— first-order

-low ' : spectrum consists of O(NO) color singlet glueballs

- high T" : spectrum consists of (N? —1) gluons




® Consider “center transformation” (“large gauge transformation” in continuum):

2
U4(3377_0) — €eXp (Zﬁﬂ-k> U4(CIZ,T0) \V/CU; 70 fixed /T
ZkngN A ALI/
- space-like plaquettes unaffected

- time-like plaquettes at 7 = 7y multiplied by zi X z,z =1 (2r commutes with all links)

1
Action S; =0 Z NReTr [] invariant
]

But Polyakov loop rotated: L(z) — ziL(x) Vz, ie. (TrL) — 2z (TrL)

Note: “inverse” symmetry breaking, ie. at high temperature (YM: less disorder at high[")



® Suppose transition is second-order (£ — 00 ):

- Long-range physics dominated by fluctuations of order parameter 1T L

- If effective Hamiltionian for 1T L is short-range, then only symmetry group and dimension matter

® Consequences: IF second-order transition, THEN
SU(2) ~ 3d Ising True
SU(3) ~ 3d Z3 77 noknown such universality class —— first-order?  True

Sp(2) ~ 3d Ising 7 NO: first-order  hep-lat/0312022
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Upper right corner of Columbia plot: first-order

® SU(3) Yang-Mills — first-order
T, ~ 270 MeV

2N 5rder

nd
2 Z(2)

order
O(4)

® First-order transition robust against
small changes of parameters (latent

&
physical point N _3 heat does not vanish instantly)
“Ny=

0

Nf=1

rnu,d




