
• Monte Carlo 

• Lattice field theory:

-  Quantum Mechanics with Path Integral      (demo)
-  Lattice �4

-  Scalar QED      QCD!

• Finite temperature:  Y-M deconfinement transition

• Fermions: 

-  Continuum symmetries

-  Species doubling

-  Finite temperature

-  Numerical simulation

 Outline 

• Finite chemical potential:

-  Expectations

-  Sign problem

-  Imaginary chemical potential 



      Why Monte Carlo?

• To compute:  Z =

Z Y

N

dxi exp[�S({xi})], hW i = 1

Z

Z Y

N

dxi W ({xi}) exp[�S({xi})]

ie.  [ratios of]  high-dimensional integrals

Also:   trapezoidal rule in high-dimension?    nb. points per dim. < 2 ?

• Simpson’s (trapezoidal) rule:  systematic error                                  CPU, ie. error ⇠ CPU�3/d

• Stochastic method:   - unbiased estimator (systematic error = 0)

- statistical error                  in any dimension ⇠ 1p
CPU

d
} beats Simpson’s rule 

when d > 6

- Random sampling:   Pick states with uniform probability,  give them weight exp(�S)

Pick states with probability               ,  give them uniform weight exp(�S)- Importance sampling:   

Z ⇡
nX

sampled states

1, hW i ⇡ 1

n
Wi

Z =

X

states

exp[�S(state)]• How to sample                                                  ?

O(h3), h ⇠ n�1/d, n ⇠



      Monte Carlo error 

• Cf.  central limit theorem: 

⇠ 1/
p
CPU

• Monte Carlo error:   ✏ ⌘
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• Moments of the error:

- error is unbiased:  h✏i = 0
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    Pre-history of Monte Carlo

Pascal triangle 

• Pascal               Fermat ,     1654:     “Problem of Points”    (cf.  Chevalier de Méré,  gambler)�!

• Laplace:     1812,    “Théorie analytique des probabilités”

• Manhattan project:     1942-46,     “neutron transport”    (scattering, absorbtion, fission)

• Bayes:     1763,    statistical inference

• Brown:     1828,    pollen grains on water

• Buffon:   1777,    Buffon’ needle problem

(also  “noodle problem”)

L L
Prob(intersect) =

2

⇡
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     Parallel histories

Path integral:    Feynman  1948

Theoretical Simulations 

Imaginary time:   Wick  1954

Renormalization:    60’s  -- 70’s

Asymptotic freedom:  Gross & Wilczek,  Politzer 1973

Lattice gauge theory:    Wilson   1974

Lattice Monte Carlo study of              :  Creutz   1980SU(2)

Hybrid Monte Carlo (quarks) :  Duane et al.   1987

Manhattan project:    1942-1946

Fermiac (dedicated MC analog computer):   1947

First Monte Carlo symposium:  1949 (pub. 1951)

Metropolis algorithm:   1953

Nowadays:   collaboration LQCD             industry   (IBM/Columbia U.  ;   Fujitsu/JLQCD) !

Von Neumann,  Ulam,  Metropolis, Fermi

(Eniac,  Maniac,  Illiac,...)



Stanislaw Ulam with FERMIAC



   ABC   of   MC

• Construct  Markov chain: 

• Properties of [non-symmetric] Markov matrix:   

At each Monte Carlo step, Prob(next state)  depends on current state only (not on past history)

• Take finite Hilbert space  (size     )   for simplicityN

After Monte Carlo step                                                   forms vector k, Prob(state i, i = 1..N )

vk =

0

@
vk1 = Prob(state 1)

vk2 = Prob(state 2)

· · ·

1

A

•          is obtained from         by application of  Markov matrix vk+1 vk M : Mij ⌘ Prob(state i ! state j)

vk+1
i =

X

j

vkj Prob(state j ! state i) =) vk+1
= MTvk

Mij � 0
X

j

Mij = 1 8i (from    ,  one always goes somewhere)i ) eigenvalues |�|  1 (Frobenius) 

M

0

@
1
1
· · ·

1

A =

0

@
1
1
· · ·

1

A ) M has  at least one eigenvalue               � = 1has  at least one eigenvalue               



   Convergence of  Markov chain

• Necessary and sufficient conditions:   

- regularity (not well-known):                                                                    (example)

•                               is  contracting map  for eigenmodes  with vk+1 = MT vk |�| < 1

IF               is the only magnitude-1 eigenvalue,  THEN                       such that � = 1 vk �!
k!1

v1 MT v1 = v1

Every Markov chain has a stationary prob. distribution               M•     has at least one eigenvalue � = 1 )

ie.            such that 9 v1 MT v1 = v1 : 8i,
X

j

Prob(state j ! state i) v1j = v1i “balance eq.”

- ergodicity (well-known):  8i, j, 9k such that (Mk)ij > 0

No two states are unreachable from each other

9k such that 8i, j, (Mk)ij > 0

• Rate of convergence to stationary distribution         :  second largest eigenvalue       of  v1 �1 M

Damping of associated eigenmode after     steps:  k �k
1

= exp(k log �
1

) = exp(�k/⌧
exp

)

is  “exponential autocorrelation time” (cf.  thermalization time)⌧
exp

= �1/ log �
1



   Detailed balance and Metropolis algorithm

• Metropolis algorithm satisfies detailed balance:    

• In practice,           is given (Boltzmann weight).   How to design Markov matrix       ?v1 M

Sufficient condition:  “detailed balance”,  ie.  8i, j, Mij

Mji
=

v1j
v1i

Mij

Mji
=

v1j
v1i

) Mijv
1
i = Mjiv

1
j )P

i

X

i

MT
jiv

1
i = (

X

i

Mji

| {z }
1

)v1j

• Detailed balance              balance  (+ assume ergodicity & regularity)=)

Mij = Prob(candidate j|i)⇥ Prob(accept j)| {z }
min(1,v1

j /v1
i )

Mji = Prob(candidate i|j)⇥ Prob(accept i)| {z }
min(1,v1

i /v1
j )

9
>>>=

>>>;
) Mij

Mji
= 1⇥

v1j
v1i

- Normalization           of          not needed1/Z v1

j = Trand � i, i = T�1
rand � j,- With                                           need  Prob(Trand) = Prob(T�1

rand)



C(t) ⌘ hW (s) W (s+ t)is � hW i2

⇢(t) ⇠
t!1

exp(�t/⌧
exp

)



Integrated autocorrelation time             :⌧int(W )

time necessary between        independent measurements⇠

    Definition: ⌧int ⌘
1

2
+

1X

t=1

⇢(t)  -- depends on observable

    If                     ,  then⇢(t) ⇡ e�t/⌧
Z 1

0
dt ⇢(t) = ⌧ = ⌧

int

= ⌧
exp

    Typically,        decreases quickly at small    , and has long noisy tail⇢(t) t

⌧int ⇠
1

2
+

MX

t=1

⇢(t)�!   truncate       :
1X

t=1
,  self-consistency: M > 3⌧int



Again



   Local updates:  Metropolis  and  alternatives

• Monte Carlo program:   perform many “sweeps”

�(x), Uµ(x)- Each sweep:   loop over all degrees of freedom (eg.                     ) and update one at a time

- Measure observables after fixed number of sweeps

• Update algorithms (can/should mix for better decorrelation): 

- Metropolis  (can perform several “hits”  on each d.o.f.) 

- Heatbath:  Prob(i ! j) = v1j

- Old state    is forgotten        better decorrelation 
  (cf. Metropolis with                   ) 

i
nhits = 1

!

- Feasible for simple distributions           only:  
            Gaussian, exponential, uniform,...

v1

- Over-relaxation:  
  Metropolis with deterministic                             (ie. reflection)                                 j = T � i, T 2 = 1

- Excellent when feasible  (        almost Gaussian)v1i
x

i

i’

xold

MET HB OR

P (x )1 i

ixx

• Consider the possibility of subgroup update (esp.                        )SU(2) ⇢ SU(3)
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   Finite temperature: the Columbia plot
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  How large is the chiral phase transition Tc ? 

?

?

columbia plot:

 How large is the influence of scaling regimes to the physical world ?

 Nf=2+1 theory: at m=0 or ∞ has a first 
    order phase transition

 Intermediate quark mass region an analytic 
    cross over is expected

 At physical quark masses, a cross over is 
    confirmed

 Critical lines of second order transition
    Nf=2:  O(4) universality class
    Nf=3:   Ising universality class

Pisarski, Wilczek PRD ‘84,

Karsch, Laermann, 
Schmidt PLB ’04,...

Ejiri et al., PRD ’09, ...

Alexandrou et al., PRD’99...

Bernard et al., PRD ’05, Cheng et al., PRD ’06, 
Aoki et al., Nature ’06...

      Projection of                                 phase diagram of QCD(mu=md,ms, T )



   Finite temperature:   pure gauge 

• Recall  thermal boundary conditions:

• Physical expectations:

- Euclidean time is compact:  ⌧ 2 [0,� = 1/T ]

- Bosonic fields are periodic:  �(x,�) = �(x, 0)

              is gauge-invariant (and independent of starting     )TrL(x) ⌧

           New closed loop:  Polyakov loop  (Wilson line) ) L(x) ⌘
Y

⌧=1,N⌧

U4(x, ⌧) = exp(ig

Z �

0
d⌧A0(x, ⌧))

SU(3)

- At low       quarks are confined.   Excitations are color-singlet bound-states of quarks and gluonsT

- At high      typical scattering energy is          .    By asymptotic freedom,                     T ⇠ T g(T ) !
T!1

0

  Expect qualitative change (“deconfinement”) at high enough T

Physical meaning:              is worldline of static color charge (cf. quark)
L(x)



     Order parameter for confinement

R

1/T
• Compare system containing charge-anticharge

with empty system: Zqq̄

Z0
= exp

✓
� 1

T
Fqq̄(R)

◆

• Express ratio as expectation value:

exp

✓
� 1

T
Fqq̄(R)

◆
=

R
DU TrL(0) TrL(R)

†
exp(�SYM (U))R

DU exp(�SYM (U))

= hTrL(0) Tr⇤L(R)iZ0 !
R!1

|hTrLi|2

            is Order Parameter for confinement in Yang-Mills hTrLi

{ hTrLi 6= 0,

• If                      then                                     ie.  confinementhTrLi = 0, Fqq̄(R) !
R!1

+1,

• If                      then                                     ie.  deconfinementFqq̄(R) !
R!1

finite,



     Deconfinement transition

• When                                  (confinement).   T = 0, hTrLi = 0

T ! 1, g(T ) ! 0 ) |hTrLi| ! 1When                                                            (free theory)

Plausible:             such that                                                  ,   ie.  deconfinement transition|hTrLi| =
T<Tc

0, |hTrLi| >
T>Tc

09 Tc

- low       :  spectrum consists of                color singlet  glueballsT O(N0)

- high       :  spectrum consists of                   gluons T (N2 � 1)

• Hand-waving explanation:   entropy mismatch  at                     first-orderTc �!

Is the phase transition associated with spontaneous symm. breaking?

• Phase transition is found:    second-order   (     infinite) for                 Yang-MillsSU(2)⇠

first-order  (     finite)  for ⇠ SU(N), N > 2
{



      Center symmetry

• Consider   “center transformation”  ( “large gauge transformation” in continuum):

U4(x, ⌧0) ! exp

✓
i

2⇡

N

k

◆

| {z }
zk2ZN

U4(x, ⌧0) 8x; ⌧0 fixed

- space-like plaquettes unaffected

- time-like plaquettes at                multiplied by                             commutes with all links)⌧ = ⌧0 zk ⇥ z†k = 1 (zk

SL = �
X

⇤

1

N
ReTr ⇤Action                                     invariant

• But Polyakov loop rotated:                                   ie.  L(x) ! zkL(x) 8x, hTrLi �! zkhTrLi

- Center symmetry         realized                                           ,   ie.  confinement  

- Center symmetry spontaneously broken                              ,  ie.  deconfinement

=) hTrLi = 0

=) hTrLi 6= 0

Note:  “inverse” symmetry breaking, ie. at high temperature  (YM:  less disorder at high    )T

1/T



   Svetitsky-Yaffe conjecture:  any gauge group, in         dimensions

• Consequences:  IF second-order transition,   THEN                                                 

Svetitsky-Yaffe does NOT predict the order of the phase transition

• Suppose transition is second-order (             ):⇠ ! 1

- Long-range physics dominated by fluctuations of order parameter TrL

- If  effective Hamiltionian for          is short-range,  then only symmetry group and dimension matterTrL

(d+ 1)

 Universality class is that of dim-          symmetric scalar field theoryd ZN�

SU(2) ⇠ 3d Ising True

SU(3) ⇠ 3d Z3 ?? no known such universality class             first-order?     True�!
Sp(2) ⇠ 3d Ising ? NO:  first-order     hep-lat/0312022



             Yang-Mills deconfinement transition is first-orderSU(3)

 Allowed domain in complex plane for TrL, L 2 SU(3)

 Distribution of          in complex plane at  TrL Tc



   Upper right corner of Columbia plot:  first-order
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  How large is the chiral phase transition Tc ? 

?

?

columbia plot:

 How large is the influence of scaling regimes to the physical world ?

 Nf=2+1 theory: at m=0 or ∞ has a first 
    order phase transition

 Intermediate quark mass region an analytic 
    cross over is expected

 At physical quark masses, a cross over is 
    confirmed

 Critical lines of second order transition
    Nf=2:  O(4) universality class
    Nf=3:   Ising universality class

Pisarski, Wilczek PRD ‘84,

Karsch, Laermann, 
Schmidt PLB ’04,...

Ejiri et al., PRD ’09, ...

Alexandrou et al., PRD’99...

Bernard et al., PRD ’05, Cheng et al., PRD ’06, 
Aoki et al., Nature ’06...

• First-order transition robust against 
small changes of parameters (latent 
heat does not vanish instantly)

SU(3)  Yang-Mills          first-order�!•            

      Effects of fermions ?

Tc ⇡ 270 MeV


