Outline

- Lattice field theory:
 - Quantum Mechanics with Path Integral
 - Lattice ϕ^4
 - Scalar QED \rightarrow QCD
- Monte Carlo
- Finite temperature: Y-M deconfinement transition
- Fermions:
 - Continuum symmetries
 - Species doubling
 - Numerical simulation
 - Finite temperature
- Finite chemical potential:
 - Expectations
 - Sign problem
 - Imaginary chemical potential

(demo)

The simplest gauge theory: scalar QED

- Change $\phi(x) \in \mathcal{R}$ to $\phi(x) \in \mathcal{C}$: $\mathcal{L}_E = |\partial_\mu \phi(x)|^2 + m_0^2 |\phi(x)|^2 + \frac{g_0}{4!} |\phi(x)|^4$
- Note global U(1) symmetry: $\phi(x) \to \exp(i\alpha)\phi(x) \ \forall x, \ \mathcal{L}_E$ unchanged

• **IDEA:** promote global symmetry to **local** "gauge" symmetry: $\phi(x) \to \exp(i\alpha(x))\phi(x)$ Obstruction: $\partial_{\mu}\phi(x)$, or on the lattice: $\frac{1}{a}(\phi(x+\hat{\mu})-\phi(x))$

SOLUTION: - introduce new degrees of freedom attached to links: $U_\mu(x) \in U(1)$

- modify derivative to covariant derivative $D_{\mu}\phi(x) \rightarrow \frac{1}{2}(U_{\mu}(x)\phi(x+\hat{\mu})-\phi(x))$

- impose transformation of links $U_{\mu}(x) \rightarrow \exp(i\alpha(x))U_{\mu}(x)\exp(-i\alpha(x+\hat{\mu}))$

• Only gauge-invariant observables have non-zero vev: $\phi^*(x)$ $(\prod_{x \to y} U) \phi(y)$

And also closed [Wilson] loops: Tr $\prod U$

Dynamics of Wilson loops?

• Action S_g allowed to contain $\sum_{\text{shape rep. }R} \sum_{R} c_{R,\text{shape}} \operatorname{Tr}_R W_{\text{shape}}$

Sum over lattice translations and rotations (Lorentz symmetry)

• Integration measure over links: $\int \prod_{x,\mu} dU_\mu(x)$, uniform & normalized "Haar measure"

In continuum limit (see next), all choices of action are equivalent

Continuum limit of Wilson action

•
$$U_{P_{\mu\nu}}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x), \quad U_{\mu}(x) = \exp(i\theta_{\mu}(x)) \in U(1)$$

• Introduce gauge field $A_{\mu}(x)$ such that $U_{\mu}(x) = \exp\left[ig\int_{x}^{x+\hat{\mu}} dx'A_{\mu}(x')\right]$
 $a \to 0: \quad U_{\mu}(x) \approx \exp[igaA_{\mu}(x+\hat{\mu}/2)]$
 $U_{P_{\mu\nu}}(x) \approx \exp\left[iga(A_{\mu}(x+\hat{\mu}/2) + A_{\nu}(x+\hat{\mu}+\hat{\nu}/2)) - A_{\mu}(x+\hat{\mu}/2+\hat{\nu}/2) - A_{\nu}(x+\hat{\nu}/2))\right]$
 $= \exp\left[-iga^{2}(\partial_{\nu}A_{\mu}(x+\hat{\mu}/2+\hat{\nu}/2) - \partial_{\mu}A_{\nu}(x+\hat{\mu}/2+\hat{\nu}/2))\right]$
 $\operatorname{Tr} U_{P_{\mu\nu}} + \operatorname{Tr} U_{P_{\mu\nu}}^{-1} \approx \exp(-iga^{2}F_{\mu\nu}) + \exp(+iga^{2}F_{\mu\nu}) \approx 2 - g^{2}a^{4}F_{\mu\nu}^{2}$
• Introduce $\beta \equiv \frac{1}{g^{2}}: \quad S_{W} = \beta \sum_{x,\mu\nu} \left(1 - \operatorname{Re}\operatorname{Tr} U_{P_{\mu\nu}}(x)\right) \stackrel{=}{=} \int d^{4}x \ \frac{1}{2}F_{\mu\nu}^{2}(x)$

Other loop shapes: same when $a \to 0$, except $\varepsilon_{\mu\nu\rho\sigma} \operatorname{Tr}(U_{P_{\mu\nu}}U_{P_{\rho\sigma}}) \to F\tilde{F}$, CP-violating

Continuum limit of Wilson action: U(1) and other groups

•
$$U(1): \left[\beta \equiv \frac{1}{g^2} : S_W = \beta \sum_{x,\mu\nu} \left(1 - \operatorname{ReTr} U_{P_{\mu\nu}}(x) \right) \right]_{a \to 0} \int d^4x \; \frac{1}{2} F_{\mu\nu}^2(x)$$

 $F_{\mu\nu} = \left(\begin{array}{ccc} 0 & B_3 & -B_2 & E_1 \\ -B_3 & 0 & B_1 & E_2 \\ B_2 & -B_1 & 0 & E_3 \\ -E_1 & -E_2 & -E_3 & 0 \end{array} \right) \longrightarrow \int d^4x \; \frac{1}{2} (E^2 + B^2) \quad \text{EM energy}$

Other Lie groups: $U_{\mu}(x) = \exp\left[ig \int_{x}^{x+\hat{\mu}} dx' \underbrace{A_{\mu}^{k}(x')}_{\in \mathcal{R}} \underbrace{\tau^{k}}_{N \times N}\right], \quad \tau^{k} \text{ generators, } [\tau^{k}, \tau^{l}] = f^{klm} \tau^{m}$

$$\beta \equiv \frac{2N}{g^2}: \quad S_W = \beta \sum_{x,\mu\nu} \left(1 - \frac{1}{N} \operatorname{ReTr} U_{P_{\mu\nu}}(x) \right)_{a\to 0} \int d^4x \, \frac{1}{4} F^a_{\mu\nu}(x) F^a_{\mu\nu}(x) \quad \text{YM action}$$

Requiring local gauge symmetry leads uniquely to EM/YM action

Continuum limit of lattice SU(N) Yang-Mills: asymptotic freedom

•
$$\beta$$
—function: $\beta(g) \equiv \frac{dg}{d\log\mu} = -b_0g^3 - b_1g^5 + \cdots$, $b_0 = \frac{1}{16\pi^2} \frac{11N}{3} > 0$, $b_1 = \left(\frac{1}{16\pi^2}\right)^2 \frac{34N^2}{3}$
 b_0 (I-loop), b_1 (2-loop) universal

Integrate (I-loop):
$$\frac{1}{b_0} \frac{dg}{g^3} = -d \log \mu \rightarrow \mu \sim \exp\left(\frac{1}{2b_0} \frac{1}{g^2}\right)$$

 $g \rightarrow 0 \hspace{0.1in} \Longleftrightarrow \hspace{0.1in} \mu \rightarrow +\infty$, asymptotic freedom

Lattice: UV scale $\mu \sim a^{-1}$, so $a(g) \sim \exp\left(-\frac{1}{2b_0}\frac{1}{g^2}\right)$, ie. $\left(g \to 0 \iff a \to 0\right)$

Continuum limit is approached as $g \to 0$ $(\beta = \frac{2N}{g^2} \to \infty)$ (critical point)

Scaling law is different from 2nd-order critical point $\xi \sim (g-g_c)^{-\nu}$

Detect continuum behaviour by [perturbative] scaling: $(m_{phys}a)(\beta) = const. \times exp(-\frac{1}{4b_0N}\beta)$

FIG. 6. The cutoff squared times the string tension as a function of β . The solid lines are the strong- and weak-coupling limits.

Less stringent requirement: scaling

Perturbative scaling (1-loop, 2-loop, ...) satisfied accurately for very large eta only

Unnecessarily demanding

Continuum behaviour is established if "scaling":

$$\frac{(am_i)(\beta)}{(am_{ref})(\beta)} = \text{const.}, \quad i = 1, 2, \cdots \text{ as } \beta \text{ is increased } (m_{ref} = \text{, eg, pion})$$

• Scaling violations polynomial in a :

 $\frac{(am_i)(\beta)}{(am_{ref})(\beta)} = \text{const.} \times (1 + c_1 a + c_2 a^2 + \cdots) \quad \longrightarrow \quad \text{guide} \ a \to 0 \ \text{extrapolation}$

• "Improved" actions: $c_1 = 0$

Precision groundstate mass/form factor/... available or underway: "I-body" physics under control

Lattice QCD Monte Carlo: sources of errors

• Systematic errors:

 $L
ightarrow\infty$, thermodynamic limit

a
ightarrow 0, continuum limit

 $m_q \searrow m_{\rm phys}$

Extrapolations guided by analytic ansätze (asymptotic freedom, χ PT)

• Statistical (Monte Carlo) errors: $\propto 1/\sqrt{\# configs}$.

30 years of steady progress since Mike Creutz, 1980:

Both errors have been shrinking thanks to hardware + algorithmic progress

 \rightarrow Universal tool for *static, equilibrium* properties of QFT

Example: hadron masses

BMW collaboration

PACS-CS collaboration