Seminars at FEFU, Vladivostok

II. Charmed baryons

Atsushi Hosaka Research Center for Nuclear Physics (RCNP) Osaka Univ

Quarkonium like states and excitations

1. ρ , λ modes and diquark motions

A heavy quark may disentangle the fundamental modes λ and ϱ \rightarrow place to look at diquark correlations

λ excitation < ρ excitation

Harmonic oscillator

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + \frac{p_3^2}{2M} + \frac{k}{2} \left((x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2 \right)$$

$$= \frac{p_\rho^2}{2m_\rho} + \frac{p_\lambda^2}{2m_\lambda} + \frac{k_\rho \rho^2}{2} + \frac{k_\lambda \lambda^2}{2}$$

$$m_\rho = \frac{m}{2}, \quad m_\lambda = \frac{2mM}{M + 2m}$$

$$k_\rho = \frac{3}{2}k, \quad k_\lambda = 2k$$

$$\omega_\lambda = \sqrt{\frac{M + 2m}{M}} \omega < \omega_\rho = \sqrt{3}\omega$$

String: $V \sim \sigma L$

$$\omega_{\lambda} \to \left(\frac{1}{2}\right)^{1/3} \left(\frac{\sigma^2}{m}\right)^{1/3} \qquad < \qquad \omega_{\rho} = \left(\frac{\sigma^2}{m}\right)^{1/3} \to \left(\frac{3}{2}\right)^{1/3} \left(\frac{\sigma^2}{m}\right)^{1/3}$$

Diquark correlations

Alexandrou, deForcrand, Lucini PRL 97, 222002 (2006)

 $C_{\Gamma}(\mathbf{r}_{u},\mathbf{r}_{d},t) = \langle 0|J_{\Gamma}(\mathbf{0},2t)J_{0}^{u}(\mathbf{r}_{u},t)J_{0}^{d}(\mathbf{r}_{d},t)J_{\Gamma}^{\dagger}(\mathbf{0},0)|0\rangle$ $J_0^f(\mathbf{r}, t) = :\overline{f}(\mathbf{r}, t)\gamma_0 f(\mathbf{r}, t):, f = u, d,$ **x)**,

$$J_{\Gamma}(x) = \epsilon^{abc} [u^{T}{}_{a}(x)C\Gamma d_{b}(x) \pm d^{T}{}_{a}(x)C\Gamma u_{b}(x)]s_{c}(x)$$

Good diquark **Bad diquark**

Indicates significant attraction between quarks in good diquark pair

See also recent QCD sum rule study, Chen et al arXiv:1502.01103 [hep-ph], To appear in PRD

Spectroscopy: More states at J-PARC

- Excited energies, decay widths are smaller
 Two distinct modes may be different
- Two distinct modes may be different

Quark model calculations

Roberts-Pervin, IJMPA, 23, 2817 (2008)

Yoshida, Hiyama, Hosaka, Oka, Phys.Rev. D92 (2015) no.11, 114029

• Hamiltonian

$$\begin{split} H &= \frac{p_1^2}{2m_q} + \frac{p_2^2}{2m_q} + \frac{p_3^2}{2M_Q} - \frac{P^2}{2M_{tot}} \\ &+ V_{conf}(HO) + V_{spin-spin}(Color-magnetic) + \dots \end{split}$$

- Solved by the Gaussian expansion method
- Quark excitations of P (l = 1), D (l = 2), ... waves Many ...

Classifications; p-wave

$$S_{qq} + l = j$$
 (Brown muck)
 $j + 1/2_Q = J_{tot}$
 $S_{qq} = 0 \text{ or } 1, \ l_{\lambda} \text{ or } l_{\rho}, \ j = 0, 1, ...$
 $J = 1/2, 3/2, ...$

 $\begin{array}{c|c} \textbf{br.}\\ \hline (l_{\lambda}, l_{\rho}) & (l_{\lambda}, l_{\rho}) \text{ diquark} & J_{\text{tot}}\\ \hline (0, 1) & (0, 0) & d^{0} \ 1^{-} & (1/2, 3/2)^{-}\\ (0, 0) & (0, 1) & d^{1} \ 0^{-} & 1/2^{-}\\ \hline \mathbf{f}_{\text{them}} & 1^{-} & (1/2, 3/2)^{-}\\ \mathbf{f}_{\text{them}} & 2^{-} & (3/2, 5/2)^{-} \end{array} \begin{array}{c} \leftarrow \textbf{7 states}\\ \text{for } \Lambda \text{ and } \Sigma \end{array}$

QM wave functions

$$\lambda \mod e$$

 $\Lambda_c(J^-;\lambda) = \begin{bmatrix} [\psi_1(\vec{\lambda})\psi_0(\vec{\rho}), d^0]^1, \chi_c \end{bmatrix}^{J=\frac{1}{2}, \frac{3}{2}} D^0c$
H.O.(gauss)
 $\Sigma_c(1/2^+) = \begin{bmatrix} [\psi_0(\vec{\lambda})\psi_0(\vec{\rho}), d^1]^1, \chi_c \end{bmatrix}^{\frac{1}{2}} D^1c$
etc.
di-quark spin

Similarly for ρ mode

And mixing of λ and ρ modes

$\lambda\rho$ mixing in the wave Herv quark Mars [GeV]

Mixing of
$$\Lambda(\text{phys}) = c_{\lambda} \Lambda(^2 \lambda) + c_{\rho} \Lambda(^2 \rho)$$

e.g. λ -mode dominant state: How much the other mode mixes?

Seminar at Vladivostok, March 28,29, 2016

Decays — Pion emission — On going, Nagahiro, Yasui, ...

To know the structure, We study transitions (decay and productions)

Quarks are confined Only transitions through photons, hadrons are available

See the structure that invisible particles form

Known spectrum so far

good diquark $\begin{bmatrix} ud \end{bmatrix}_{S=0,I=0} C \end{bmatrix}$ l = 1 bad diquark $\begin{bmatrix} [uu]_{S=1,I=1} C \end{bmatrix} \quad \begin{bmatrix} ud]_{S=0,I=0} C \end{bmatrix}$ $l = 0 \qquad l = 0$

Known spectrum so far

Transitions between lower states

Pion coupling

• Place to look at the *two independent* operators

Chiral dynamics of the NG bosons $0^-: \sigma \cdot p$

Seminar at Vladivostok, March 28,29, 2016

Ground \rightarrow ground transitions

Preliminary results

Ground $(1/2, 3/2^+) \rightarrow$ Ground $(1/2^+)$

Excited \rightarrow ground transitions

Isospin breaking right on the threshold

Preliminary results

P-wave excitation \rightarrow Ground (1/2⁺)

			$\Lambda_{c}(2592;1/2^{-})$	$\Lambda_{c}(2625;3/2^{-})$
PDG value 「 _{tot} [MeV] (3body含む)			$\textbf{2.6} \pm \textbf{0.26}$	< 0.95
Γ ^{theo} (Σ _c π) [MeV]	λ-mode	1/2-	1.7 – 3.2	18.3 - 44.4
		3/2-	-	0.075 - 0.14
	ρ-mode	$1/2^{-}$ ($j = 0$)	0	0
		$1/2^{-}(j = 1)$	7.3 – 13.1	80 - 188
		$3/2^{-}(j = 1)$	-	0.036 - 0.66
		$3/2^{-}(j=2)$	-	0.078 - 0.12
		$5/2^{-}(j=2)$	-	0.030 - 0.053

分 7 states

Decays — Pion emission — On going, Nagahiro, Yasui, ...

 $\Lambda_c(2765), \Lambda_c(2880), \Lambda_c(2940) \rightarrow \Sigma_c \pi, \Sigma_c^* \pi$ decay widths ?

in PDG, BR($\Sigma_c^{(*)}\pi$ /total) are not shown

 \rightarrow sum-up $\Sigma_c \pi + \Sigma_c^* \pi$ decay widths and compare to Γ_{tot}^{PDG}

			$\Lambda_{c}(2765)?^{?}$	$\Lambda_c(2880)5/2^+$	Λ _c (2940)? [?]
PDG value total Γ [MeV]			50	5.8 ± 1.1	17^{+8}_{-6}
	λ-mode	1/2-	65 – 146	112 – 255	145 – 314
	J-	$3/2^{-}$	52 - 104	129 – 249	182 – 332
	ρ-mode J ⁻	$1/2^{-} (j = 0)$	0	0	0
		$1/2^{-}(j=1)$	325 - 675	503 - 1130	558 - 1301
This work		$3/2^{-}(j=1)$	211 - 414	440 - 921	537 - 1155
$\Gamma_{\Sigma\pi} + \Gamma_{\Sigma^*\pi}$ [MeV]		$3/2^{-}(j=2)$	9 – 13	53 - 68	96 - 119
[]	-	$5/2^{-}(j=2)$	6 - 9	42 – 55	182 - 332 0 $558 - 1301$ $537 - 1155$ $96 - 119$ $80 - 101$ $3.8 - 17.5$ $24.8 - 61.4$ $19.8 - 46.5$
	λ-mode J ⁺	$1/2^+ (j = 0)$	1.6 – 4.4	3.7 – 13.5	3.8 - 17.5
		$3/2^+ (j=2)$	4.6 - 10.8	16.2 – 39.2	24.8 - 61.4
		$5/2^{+}(j=2)$	1.9 – 4.3	11.1 - 26.1	19.8 - 46.5

 $\Lambda_c(2765), \Lambda_c(2880), \Lambda_c(2940) \rightarrow \Sigma_c \pi, \Sigma_c^* \pi$ decay widths ?

in PDG, BR($\Sigma_c^{(*)}\pi$ /total) are not shown

 \rightarrow sum-up $\Sigma_c \pi + \Sigma_c^* \pi$ decay widths and compare to Γ_{tot}^{PDG}

			$\Lambda_{c}(2765)?^{?}$	$\Lambda_c(2880)5/2^+$	Λ _c (2940)? [?]
PDG value total Γ [MeV]			50	5.8 ± 1.1	17^{+8}_{-6}
	λ-mode	1/2-	65 - 146	11 <u>2 - 255</u>	145 - 314
	J-	$3/2^{-}$	52 - 104	1 <u>29 - 2</u> 49	182 - 332
	ρ-mode J [−]	$1/2^{-} (j=0)$	0	0	0
This work $\Gamma_{\Sigma\pi} + \Gamma_{\Sigma^*\pi}$ [MeV]		$1/2^{-} (j = 1)$	325 - 675	503 - 1130	5 <u>58 - 1301</u>
		$3/2^{-} (j = 1)$	211 - 414	440 — 921	5 <u>37 – 1155</u>
		$3/2^{-}(j=2)$	9 - 13	53 - 68 -	<u>96 — 119 </u>
		$5/2^{-} (j = 2)$	6 – 9	42 - 55	80 – 101
$\Gamma(\Sigma^*\pi)$		(j = 0)	1.6 – 4.4	3.7 – 13.5	3.8 – 17.5
$\frac{\Gamma(\Sigma_c \pi)}{\Gamma(\Sigma_c \pi)} = \frac{1}{2} \frac{\Gamma(\Sigma_c \pi)}{\Gamma(\Sigma_c \pi)} = \frac{1}$	are different 2)		4.6 – 10.8	16.2 – 39.2	24.8 - 61.4
		2^+ (j = 2)	1.9 - 4.3	11.1 – 26.1	19.8 - 46.5

Decays — Pion emission— On going, Nagahiro, Yasui, ...

Spin and parity of $\Lambda(2880)$

• Spin ← decay angular distribution

 $\Lambda_{\rm c}(2880) \longrightarrow \Sigma_{\rm c}(2455)\pi$

Seminar at Vladivostok, March 28,29, 2016

Generally, however, P wave exists and is larger than F wave term \Rightarrow How can we explain data?

j Brown muck spin									
				1	Λ_{c}	$\Lambda_{c}(2880)5/2^{+}$			
					Γ (MeV)	$R = \Gamma(\Sigma_{\rm c}^*\pi)/\Gamma(\Sigma_{\rm c}\pi)$			
Experimental values (Belle(07))				7))	5.8 ± 1.1	$0.225 \pm 0.062 \pm 0.025$			
	$(\ell_{\lambda},\ell_{\rho})$	$J^P_{\Lambda}($	j)	$\left(\ell_{\lambda}+\ell_{\rho}\right)$					
This work	(0, 1)	5/2-	(2)	1	42 –55	1.6 – 1.7			
	(2, 0)	5/2	(2)	2	11 - 26	8.2 - 8.5			
	(0, 2)	5/2	(2)	2	28 - 52	19.0 – 19.1			
	(1, 1)	5/2+	(2)	2	52 - 110	27.7 - 30.4			
				1	0.63 – 1.7	(∞)			
		5/2+	(3)	2	2.8 - 5.7	0.41 - 0.43			

This is the only configuration to explain

Selection rule due to the brown muck (diquark)

Productions

• How much { charm excited states

are produced

• Can we study structure?

- Vector-Reggeon dominance with some pseudoscalar
- Energy dependence is also well produced

Prediction to the charm production

Seminar at Vladivostok, March 28,29, 2016

How are they related to internal structure?

.

$\mathbf{N} = \overline{\langle i \mathbf{O} f \rangle}$		arious Y _C
	$ \begin{array}{c} \Lambda_{c}^{+} \\ \Lambda_{c}(2595)^{+} \\ \Lambda_{c}(2625)^{+} \\ \Lambda_{c}(2625)^{+} \end{array} $	**** *** ***
Quark model wave functions (Harmonic oscillator)	$ \begin{array}{c} \Lambda_{c}(2765)^{+} \\ \Lambda_{c}(2880)^{+} \\ \Lambda_{c}(2940)^{+} \\ \Sigma_{c}(2455) \end{array} $	↑ *** *** ***
	$\Sigma_c(2520)$	***

 $\Sigma_{c}(2800)$

$$q_{\text{eff}}$$
: the momentum transfer ~ Large

$$GS \quad \left\langle B_c(\mathbf{S}\text{-wave}) \middle| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} \middle| N(\text{S}\text{-wave}) \right\rangle_{radial} \sim 1 \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right)$$

Excited states

$$\langle B_c(\mathbf{P}\text{-wave}) | \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} | N(\text{S-wave}) \rangle_{radial} \sim \left(\frac{q_{eff}}{A}\right)^1 \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right)$$

$$\langle B_c(\boldsymbol{D}\text{-wave}) | \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} | N(\text{S-wave}) \rangle_{radial} \sim \left(\frac{q_{eff}}{A}\right)^2 \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right)$$

Transitions to excited states are not suppressed!

Strange $k_{\pi}^{CM} = 1.59 \text{ [GeV]}, k_{\pi}^{Lab} = 5.8 \text{ [GeV]}$

l = 0	$\Lambda_{-}(\frac{1}{2}^{+})$ 1.00	$\frac{\Sigma_{-}(\frac{1}{2}^{+})}{0.067}$	$\frac{\Sigma_{-}(\frac{3}{2}^{+})}{0.44}$				
l = 1	$\Lambda_{-}(\frac{1}{2}^{-})$ 0.11	$\Lambda_{-}(\frac{3}{2}^{-})$ 0.23	${\Sigma_{-}({1\over 2}^{-})}\ 0.007$	$\frac{\Sigma_{-}(\frac{3}{2}^{-})}{0.01}$	$\frac{\Sigma'_{-}(\frac{1}{2}^{-})}{0.01}$	$\frac{\Sigma'_{-}(rac{3}{2}^{-})}{0.07}$	$\frac{\Sigma_{-}^{\prime}(\frac{5}{2}^{-})}{0.067}$
l = 2	$\Lambda_{-}(\frac{3}{2}^{+})$ 0.13	$\Lambda_{c}(\frac{5}{2}^{+}-)$ 0.20	$\frac{\Sigma_{-}(\frac{3}{2}^{+})}{0.007}$	${\Sigma_{-}(rac{5}{2}^{+}) \over 0.01}$	$\frac{\Sigma_{-}^{\prime}(\frac{1}{2}^{+})}{0.004}$	$\frac{\Sigma'_{-}(\frac{3}{2}^+)}{0.02}$	$\begin{array}{c} \Sigma'_{-}(\frac{5}{2}^{+}) & \Sigma'_{-}(\frac{5}{2}^{+}) \\ 0.038 & 0.04 \end{array}$

Charm production spectrum

Seminar at Vladivostok, March 28,29, 2016

Angular momentum dependence

Angular momentum dependence

π

 $\Delta L \sim rq \sim 1.5$ charm or or 0.4 strangeness K*, D*

Analogy to the hyper nucleus production

Analogy to the hyper nucleus production

Nucleus

Hyper-nucleus

Analogy to the hyper nucleus production

Summary

- Heavy quarks identify and disentangle different modes of baryons, ρ and λ modes => diquark dynamics?
- Decays are useful to further understand the structure and fundamental nature of hadron physics = QCD
- Productions are useful for structure study A similar feature with hyper nuclei
- Charm baryons could be abundantly produced

