Seminars at FEFU, Vladivostok

Atsushi Hosaka Research Center for Nuclear Physics (RCNP) Osaka Univ

Physics in Japan/RCNP

Accelerators in Japan

RCNP Cyclotron Facility

大阪大学 Osaka University Undertaking by cooperation among RCNP and **Graduate School of Medicine and Science**

Medical and clinical applications of accelerator science, nuclear physics, radiation physics

Graduate School of Medicine

LEPS@SPRing-8 120 km distance from RCNP

Super Photon ring -8 GeV

- Third-generation synchrotron radiation facility
- Circumference: 1436 m
- 8 GeV, 100 mA
- · 62 beamlines (Max)

Physics objectives <u>Θ⁺ study</u>

<u>Λ(1405) with K^{*} photo-production</u> <u>Modification of mesons in nucleus</u> Missing resonance search K-NN search Hyperon-nucleon interaction

J-PARC 600 km east from Osaka

50 GeV proton -> 30 GeV pion beam

Physics of charm hadrons

- Primarily single charm baryons, excited states
- Hidden charm baryons, pentaquark
- D, D* mesons and excited states
- Charmed nuclei

Proposal approved and physics discussions are going

Supercomputer

- Cooperating SX-ACE (NEC) vector processor ~ 393 TF
- Spend about 20 million yen (~ 0.2 million dollar)/year
- ~ 100 users (about 10 foreign uses), ~ 30 active users
- Lattice QCD, Nuclear structure, Few-body, Supernova
- About 10-20 publications/year

Role in the community

High Performance Computer Infra with the Japan largest supercomputer. KEI

Our recent activities

Exotic hadrons beyond qqq and qq^{bar} Phenomena near and above thresholds Hadronic molecules

Heavy quarks to disentangle correlations Hadrons are strongly correlated systems What are the effective degrees of freedom Constituent quarks, diquarks, glueons^{*}, ...

I. Exotic hadrons beyond $q\bar{q}$, qqq

1. Introduction

QED: Lagrangian is *simple* and physics is *understandable*

$$L = \overline{\psi} \left(i \not\partial + e \notA - m \right) \psi - \frac{1}{4} F^2$$

Can be a small parameter

QCD: Lagrangian is *simple* BUT physics is *not easy*

$$L = \sum_{f} \overline{q}_{f} \left(i \not\partial + g \notA - m_{f} \right) q_{f} - \frac{1}{4} F^{2}$$

Depends on the physics scale

Basic features

- Elementary quarks and gluons are not observed/confined
- Observed hadrons are composites of strongly correlated quarks-gluons
- Vacua for quarks and hadrons are different→Phase structure
- Hadron properties are environment/vacuum dependent

- Chiral symmetry breaking quark condensate - Scale invariance violation gluon condensate - Topological density instanton vacuum - Color confinement Polyakov loop

 $\langle \bar{q}q \rangle \neq 0$

$$\langle G_{\mu\nu}G_{\mu\nu}\rangle \neq 0$$

$$\left\langle G_{\mu\nu}\tilde{G}_{\mu\nu}\right\rangle \neq 0$$

 $\left\langle \mathcal{P}\exp\left(i\int d\tau A_4\right)\right\rangle = 0$

Phases in QCD

Spectroscopy

- Ground states are well described (lattice)
- Excited states/resonances are less described
- ➡ Reactions (productions and decays) are neither

Focus on

• Why many hadrons are qqq and qq^{bar}?

Ground states are well described (lattice)

S. Aoki et al., Phys.Rev.Lett., 84, 238–241 (2000), arXiv:hep-lat/9904012.
S. Durr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, et al., Science, 322, 1224–1227 (2008) arXiv:0906.3599.

Aoki Hatsuda Ishii, Phys.Rev.Lett. 99 (2007) 022001

HAL QCD data are consistent with the quark Pauli effects.S=0T. Inoue et al., (HAL QCD) PTP 124, 591 (2010)

1.6

1.6

1.6

Excited states/resonances are less described

 $N^{(1/2)}$

 $N^{*}(1/2^{+})$ 3.0 3.0 Ð <u>_</u>I⊉ 3.0 3.0 J(-) N(+ 2.5 函 N(-) N(+) 2.5 2.5 mass [GeV] 2.0 mass [GeV] **₽** mass [GeV] 2.0 2.0 1.5 В 1.5 1.5 С 1.0 Exp A:(πN) × 1.0 1.0 B:(πN) 0.5 C:(\pi N) × 0.2 0.1 0.0 0.5 0.5 0.2 0.4 0.6 0.8 1.0 0.8 0.2 0.4 0.6 1.0 1.2 0.0 0.0 $M_{\pi}^{2} [GeV^{2}]$ $M_{\pi}^{2} [GeV^{2}]$

G.P.Engel et al., BGR Coll., PRD82(2010)034505

Excited states/resonances are less described

David Richard, Talk at YITP, HHIQCD, Feb. 2015

Why many hadrons are qqq and qq^{bar}?

Why many hadrons are qqq and qq^{bar}?

A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

Why many hadrons are qqq and qq^{bar}?

Particle Data Group

Baryons

	LIGHT UNFLAVORED		STRANGE CHARMED, STRANGE		(Teres			P.,.		A(1232)	P		5-+	P.,		=0	P.,		A+				
	FLPC1	- 2 - 0)	RIPCI	(3 - 11, c	10	(c = 3 =	10		1(2-)	12	P.,		A(1600)	P		5-0	P.			P.,		A (2505)?	
	1 (2)	216.000	1 1 1 1 1		1,21	- 0.4	42.1	• n _i (15)	0+(0-+)	N(1440)	P.,		A(1620)	C.,		5-	P.,		= =(1530)	P		A (2625)*	
•	1 [9-]	 #2(3670) 	1-(2)	• K**	1/2[0"]	• D'	0[0"]	• 7/9(15)	0 (1)	AI(1520)	0		4(1200)	530		5(1385)	P.a		=(16:30)	· 13		nc(2025)	
• •	a+(a - +)	• p(1980)	+(2)	• • •	1/2(0)	• D ₁	0(1)	• X _c (1P)	0+11++1	A(1525)	6		2(1700)	230		TUARC	D.		2736	n o		n _c (2765).	
616000	0+(0++)	• (1700)	1-(3)	128	1/20/07	CS	0(0.1	• A.(1P)	$p^{2}(1 + -1)$	N(1535)	211		2(1750)	P31		20.20	14			y		A _c (2880)*	
 a(770) 	1+(1)	a (1200)	1-(2++)	2000	1/20/07/1	 D₁₁(2400) D₁(2400) 	0[1-]	• xo(1P)	a+(2++)	N(1650)	511		$\Delta(1900)$	S ₃₀		2(1960)	~		2[1820]	D13		14:02 COO	
• u(782)	0-0	• 6(1710)	a+(a++)	- K ¹ (880)	1/2(27)	 D_1(250) D_2(2573) 	2010	• n.(25)	$0^{+}(0^{-}+1)$	N(1675)	D_{25}		∆(1905)	F35		2 (1580)	D11		±[1950]			$\Sigma_c(2455)$	
 v(953) 	0+(0-+)	m(1760)	9+19-+1	• K (1270)	1/2(1+1)	D. (2000)	0(1-1	• (25)	-i1i	N(1680)	F15		$\Delta(1910)$	ρ_{31}		£ (1620)	S ₁₁		±(2030)			$\Sigma_c(2520)$	
 6(980) 	0+10-010	=[1800]	1-(0-+)	SO.	1/2(1+1)	pillinud	41.1	·	G-j1j	N(1700)	D_{13}	•••	∆(1920)	P_{33}	•••	Σ(1660)	P_{11}		$\Xi(2120)$		•	$\Sigma_{c}(2800)$	***
 a₁(980) 	1-(2++)	6(1810)	0+(2++)	 K*[1410] 	1/2(1-1	BOTTO	M.	 X(3872) 	0 ² (1 ²⁺)	N(1710)	P_{11}	•••	4(1930)	D_{25}	•••	Σ(1670)	D ₁₃		Ξ(2250)		••	=:	
 \$\$(1030) 	0-(1)	X[1835]	27(2-+)	 AC(1400) 	1/2(0+)	(8 - 8)	1)	$\chi_{cl}(2P)$	$0^{+}(2^{+})$	N(1720)	P_{13}		4(1940)	D_{11}		Σ(1690)		••	E(2370)		••	=0	
 b₁(1170) 	$0^{-}(1^{+})$	 \$\phi_1(1850)\$ 	0-(3)	 A1(1430) 	1/2(2+)	•B*	$1/2(0^{-})$	X(3940)	71(72)	N(1900)	P_{11}	••	.4(1950)	F10		Σ(1750)	S11	***	E(2500)			= +	
 b₁(1235) 	$1^{+}(1^{+})$	(1870)	$0^+(2^{-+})$	A(1460)	1/2(0~)	• B ⁰	$1/2(0^{-1})$	X(3945)	77(722)	N(1990)	F	••	A(2000)	E.	••	E(1770)	P11		. ,				
 a₁(1260) 	1-(1++)	 m₂(1880) 	1-(2-+)	K ₂ (1580)	$1/2(2^{-})$	• B*/8	OCTURE	 g(4043) 	0-(1)	A(2000)	E.c.	aad	A(2150)	c		£(1775)	D.,		Q ⁻			= c	
 f₂(1270) 	0+(2++)	p(1900)	1+(1)	A(1630)	$1/2(?^{?})$	• B*/B-/B-/	-baryon	 gi(4160) 	0-(1)	A(2080)	n.,	ЧЧЧ	4(22010)	530		X(1840)	P.,		0(2250)			$\Xi_{c}(2645)$	
 f₁(1295) 	$0^{+}(1^{-+})$	f ₂ (1910)	$0^+(2^+)$	K ₁ (1650)	$1/2(1^+)$	Via and Via C	KM Ma-	 X[4260] 	71(1)	A(2000)	6		24(2200)	OW		2(100)	P. 13		0(2380)-		••	$\Xi_{c}(2790)$	
 n(1295) 	0*(0-+)	 f₂(1950) 	0+(2++)	 K*(1680) 	$1/2(1^{-})$	trix Elements		X(4360)	1-(1)	N(2090)	211		24(2300)	PF39		2(1000)	211		0(2470)-			$\Xi_{c}(2815)$	
 #(1300) 	1-(0-1)	p(1990)	1+(3)	 K₀(1770) 	$1/2(2^{-})$	• B*	1/2(1**)	• g(4415)	0 (1)	N(2100)	P_{11}		∆(2350)	D_{35}		7[1412]	P15		S	S		$\Xi_c(2930)$	
• 4)(1329) • 6(1329)	a+(a++)	• 5(2010)	a+(a++)	 K[*]₃(1790) 	$1/2[3^{-}]$	87(5732)	2(1.)		50	N(2190)	017		$\Delta(2390)$	F30	•	2[1940]	D11					$\Xi_i(2980)$	
b (130)	3-(1+-)	A (2000)	1-(4++)	 K₂(1820) 	$1/2(2^{-})$	• B ₁ (5/21) ²	1/2(1*)	m(15)	$0^{+}(0^{-}+1)$	N(2200)	D_{15}		∆(2400)	G_{39}		2 (2000)	511	-				$\Xi_{c}(3055)$	
 m (1400) 	1-0-+1	 £(2950) 	0+(4++)	A(1830)	1/2[0"]	 Billing). 	1/2/2-1	• 7(15)	0-(1)	N(2220)	H ₂₉		∆(2420)	$H_{3,11}$	••••	£ (2030)	F_{1T}					E. (3080)	
 e(1405) 	0+(0-+)	(2100)	1-(2-+)	Act(1950)	1/2[0*]	BOTTOM, ST	TRANCE	 X10(1P) 	$0^{+}(0^{+}^{+})$	N(2250)	$G_{1:9}$		$\Delta(2750)$	Ph.23	••	Σ(2070)	F ₂₅	•				E.(3123)	
 6 (1420) 	0+(1++)	6(2100)	0+(0++)	A_(1900)	1/2(21)	$(\delta = \pm 1.5)$	- #4)	• $\chi_{11}(1P)$	$0^{+}(1^{++})$	N(2600)	1,11	•••	A(2950)	K2.25	••	Σ(2080)	P_{13}	••				00	
u(1420)	0-(1)	6(2150)	$0^+(2^+)$	 W1(1042) 	1/2[41]	 B⁰₁ 	0(0~)	• $\chi_{11}(1P)$	0+(2++)	N(2700)	K111	••				$\Sigma(2100)$	G_{17}	•				o cormit	
6(1430)	0+(2++)	A(2150)	1+(1)	K_(2250)	1/2[2]]	• B	$0(1^{-})$	 T(25) 	0-(1)		-		4	p_{ii}		Σ[2250]		***				122(2270)-	
 a₀(1450) 	17(9++)	\$(2170)	0-(1)	A*(2380)	1/2(57)	 B₁₁(500) 	$1/2(1^+)$	7(16)	9-(2)	1			A(1405)	Sec		Σ[2455]		**				-+	
 p(1450) 	1+(1)	£(2200)	$0^{+}(0^{+}+)$	K.(2500)	1/2(4=1	 B (5840)* 	$1/2(2^+)$	 Xao(3N) 	• (0 + +)	1			4(1520)	0		E[2620]		••				- or	-
 q(1475) 	0+(0-+)	f_(2220)	0+(2++ 0	4 ACT 32 3001	inn'	B (5850)	7(7 ⁷)	 X_{B1}(2P) 	0+(1++)	1			4(1600)	P.,		£[3000]						-0	
 f₀(1500) 	0+(0++)	q(2225)	0+(0-+)			ROTTOM OF	ARMED.	 X₁₁(2P) X₁₁(2P) 	0 + (2 + +)	1			A(1670)	201		£(3170)						A _b	
6(1510)	0*(1 + +)	p ₃ (2250)	1+(3)	CHARM	/ED	(B = C =	#10	• 7 (35)	0 (1)	1			74[1670]	201		2(3113)						Σ_{0}	
 r_(153) 	0-(2)	 f(2300) f(2300) 	0 * [2 * *]	[C = 1	11)	• R [±]	0(0***)	7(1064)	0-0	1			/4[1690]	D ₀₃								Σp	
£(1505)	0*(2**)	6(2300)	a+(a++)	• D ^a	$1/2(0^{-})$	- 0 c	40.1	. 7(11020)	0-(1)	1			A(1800)	500								l DOC	
p(1570)	0-11 + -1	• 6 (2340)	a+(2++)	• D ^r	1/2[0"]			• • • • • • • • •	, . (.)	1			A(1810)	ρ_{01}	••••							<u>0</u>	
n(1600)	1-(1-+)	+ (2160)	1+(5)	• D*(2007)*	1/2[1]			NON-qq C	ANDIDATES	1			A(1820)	F ₀₅									
+ (3640)	1-0++1	a (2450)	1-16++1	• D*(2000)*	1/2[1]			NON-qT	CANDI-	1			A(1830)	D_{05}									
6(1640)	0+12++1	6.(251.0)	0+16++1	0(200)	1/2019-1			DATES		1			A(1890)	P_{00}									
 a)1645) 	0+12-+1	-917	- (-)	CO	1/200.1					1			A(2000)										
 u(1650) 	0-(1)	OTHER	RLIGHT	• D((2420)*	1/2(11)					1			A(2020)	Free									
 un (1670) 	0-(3)	Further St	ates	D (2430)	1/2(1+1)					1			A(2100)	Gu									
				 D124601⁰ 	1/2(2+1					1			4(2110)	6									
				 D*C246/0* 	1/3(2+1)					1			1022103	r06									
				0*014214	1/2021					1			/1(2325)	6.03									
				2 (con)	1.46.2					1			7(2350)	1639									
										1			A(2585)										

25 kinds

Mesons

22 kinds

Seminar at Vladivostok, March 28,29, 2016

LHCb confirmed the tetraquark Z+(4430)

http://www.theguardian.com/science/life-and-physics/2014/apr/13/quarks-bonding-differently-at-lhcb

So until last week there were two known types of hadron.

LHCb has just confirmed what data from other experiments had already led us to suspect. There is a third way.

Phys. Rev. Lett. 112, 222002

Seminar at Vladivostok, March 28,29, 2016

Threshold phenomena

Threshold phenomena

Important ingredients

 Heavy particles are easily bound Kinetic energy is suppressed

Spin dependent int. is suppressed

Spin-dependent term

• Pion (meson) exchange between light quarks $Q_q = OPE$ $Q_q = OPE$ $Q_q = OBE$ Hadron dynamics based on chiral symmetry

Hadronic molecules

- •Λ(1405) as KN sū uud ~ K⁻p molecule
- DN and BN
 c̄qqqq b̄qqqq
 Z_b and related

(1) $\Lambda(1405)$ as \overline{KN}

The lightest negative parity baryon excitation of strangers –1 though it contains the strange quark

(1) $\Lambda(1405)$ as \overline{KN}

The lightest negative parity baryon excitation of strangers –1 though it contains the strange quark

SU(3) coupled channel model

E. Oset and A. Ramos, Nucl. Phys. **A635**, 99 (1998) Hyodo, Nam, Jido, Hosaka, Phys.Rev. C68 (2003) 018201

S =	-1		I =	0		
		$\bar{K}N$	$\pi\Sigma$	$\eta\Lambda$	$K\Xi$	$\leftarrow \text{ channels, } i, j, \dots$
I = 0	$ar{K}N$ $\pi\Sigma$ $\eta\Lambda$ $K\Xi$	3	$-\sqrt{\frac{3}{2}}$	$\frac{3}{\sqrt{2}}$ 0	0 $\sqrt{\frac{3}{2}}$ $-\frac{3}{\sqrt{2}}$ 3	 Interaction strengths Chiral Lagrangian Weinberg-Tomozawa
	i		Re	sona	nce	j

Two poles for $\Lambda(1405)$

Hyodo-Jido-Hosaka, Phys.Rev. C78 (2008) 025203 T. Hyodo, Doctor thesis, 2006

Seminar at Vladivostok, March 28,29, 2016

$\Lambda(1405)$ in a lattice

$\Lambda(1405) \sim \overline{KN} \sim s\overline{u}uud$ has an annihilation channel ~ sud

$\Theta^+(1520) \sim KN \sim \overline{s}uudd$ has no annihilation channel

Comparison: sud (\overline{KN}) vs sudd (KN): Pentaquark)

ΚN

- Sufficient attraction due to annihilation channel
- Kaon has two faces

light (chiral dynamics) and heavy (kinetic motion suppressed)

KN

- No KN coupling from WT
- OPEP is possible but does not work sufficiently

(2) **D**N and BN

Yamaguchi, Yamaguchi, Yasui and Hosaka Phys.Rev.D84:014032 (2011), D85,054003 (2012)

Ohkoda, Yamaguchi, Yasui and Hosaka Phys.Rev. D86: 034019, 014004, 117502 (2012)

Genuinely exotics with no annihilation

DN loosely bound and resonance states

Yasui-Sudoh, PRD80, 034008, 2009 Yamaguchi-Ohkoda-Yasui and Hosaka, PRD84:014032,2011

$Z_b(10610, 10650)$ bbud arXiv:1105.4583v1 [hep-ex]; PRL 108, 032001 (2012)

Three-body decay

Invariant mass of πY(nS)

Seminar at Vladivostok, March 28,29, 2016

Unique features of Z_b resonances

- States appear near the thresholds
- Masses of $Z_b(10610)$, $Z_b(10650)$ are similar
- Heavy spin changing processes occur

$\begin{array}{ccc} \Upsilon(5S) \rightarrow & Z_b \rightarrow & \Uparrow \Upsilon \pi \\ \bigstar & & h_b \pi & \checkmark \end{array}$

HQ forbidden process occurs equally with allowed ones Explained by BB* molecules

Z_b as a $B\overline{B}^*$ molecules

Bondar et al, Phys.Rev. D84 (2011) 054010 Ohkoda, Yamaguchi, Yasui, Sudoh and Hodaka, Phys.Rev. D86 (2012) 014004

- 1. Masses
- 2. Transitions: Heavy quark selection rules
- 3. Decays into bottomonium

Z_b as a $B\overline{B}^*$ molecules Similar to the model for the DN

Production

 $\mathbf{2}$

9

 $f(W_{b0}^{--}\pi)$: $f(W_{b1}^{\prime--}\pi)$: $f(W_{b1}^{--}\pi)$: $f(W_{b2}^{\prime--}\pi)$: $f(W_{b2}^{--}\pi)$

4.5

9

12

Seminar at Vladivostok, March 28,29, 2016

$Z_{b}(10610, 10650) \rightarrow Y(nS) + \pi$

	1061	0	10650	10650				
	Exp.	Theory	Exp. Theor	ry				
$\Upsilon(1S)\pi^+$	0.059 ± 0.017	0.072	0.028 ± 0.008 0.04	4				
$\Upsilon(2S)\pi^+$	0.81 ± 0.22	0.46	0.28 ± 0.07 0.31					
$\Upsilon(3S)\pi^+$	0.40 ± 0.10	0.13	0.19 ± 0.05 0.18	3				

$Z_{b}(10610, 10650) \rightarrow Y(nS) + \pi$

	1061	0		10650				
	Exp.	Theory	Exp.	Theory				
$\Upsilon(1S)\pi^+$	0.059 ± 0.017	0.072	0.028 ± 0.028	008 0.044				
$\Upsilon(2S)\pi^+$	0.81 ± 0.22	0.46	$0.28 \pm 0.$	07 0.31				
$\Upsilon(3S)\pi^+$	0.40 ± 0.10	0.13	$0.19 \pm 0.$	05 0.18				

Summary

- Many new hadrons are found beyond qqq and $q\overline{q}$
- Multiquarks may form hadronic molecules
- Coupled channel dynamic is crucial near the threshold
- Further to be studied Hadron-hadron interactions Diquarks, gluons, compact multiquarks...

Y. Ikeda: arXiv:1602.03465 [hep-lat]

Potential matrix (IJ/4 - pnc - D^{bar}D*)

