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D. Blaschke, J. Jankowski, and M. Naskręt 
arXiv:1705.00169
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(Hadron Phase)

QGP



J.Cleymans et al.,   
Phys. Rev. C73, (2006) 034905.
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Intuitive meaning of 
Chemical Potential µ

Tr e�(H�µN̂)/TZ(µ, T ) =
= e�F/T

e�(H�µ(N̂+1))/T

e�(H�µN̂)/T
= e��F/T

N N N
N N

Energy for adding  
one more particle



Lattice QCD + μ
µN = µ ̄�4 is added? 

They found the energy density diverges.

At that time, Poland was under the martial law. 
I was there, and considered it independently.

P.Hasenfratz and F.Karsch 
Physics Letters B125, (1983), 308

A. Nakamura 
Physics Letters B149, 1984,391 
Behavior of quarks and gluons at finite 
temperature and density in SU(2) QCD 



Nakamura was thinking as follows:

L =  ̄[@k�k + (@4 + µ)�4 +m] 

In the continuum theories, 

On the lattice,（free case in the momentum space）
ipµ = @µ

�(p) = I � 
4X

µ=1

{(1� �µ)e
ipµ + (1 + �µ)e

�ipµ}

ip4 ! ip4 + µ

I � [
3X

µ=1

{(1� �µ)e
ipµ + (1 + �µ)e

�ipµ}]

�[(1� �4)e
ip4+µ + (1 + �4)e

�ip4�µ]



Then we can change the hopping parameters 

e+µ e�µ

(depending on the forward or backward)

In the co-ordinate space with gauge field,

� = I � 
3X

l=1

n
(1� �l)Ul(x)�x0,x+l̂ + (1 + �l)U

†
l(x

0)�x0,x�l̂

o

�e+µ(1� �4)Uµ(x)�x0,x+4̂ � e�µ(1 + �4)U
†
µ(x

0)�x0,x�4̂

U4 = eiA4Remember

A4 A4 ! A4 + iµ

Then, we change
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Anyway, we had got Lattice Action with  

Several big groups started simulation:  
Of course SU(3). 

Nakamura could use only a small computer, 
and started a simulation with SU(2).  
(Computer room staffs at Frascatti lab. kindly 
allowed me to use their server, VAX11.)

µ



Sign Problem
Lattice QCD does not work 

at finite density !
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But

Big groups failed, and only 
(poor) Nakamura got results.
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For

Real
(in general)

Complex

Complex Sign Problem

For



Origin of Sign Problem
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Wilson Fermions

KS(Staggered) Fermions
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Hopping Parameter Exp. 
or 

Large Mass Expansion.

Closed loops do not vanish

Combine both

: Polyakov Loop

Lowest       depsnent terms



Sign Problem is 
sever 
when    is large 
when    is lowT
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Allton et al., Phys.Rev.D.66. 074507 
(arXiv:hep-lat/0204010)
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1.Pure imaginary chemical potential 
   
   

2.Color SU(2) 
 
 

3.Iso vector (finite iso-spin)

No Sign problem cases

(Phase Quench)
16



Phase Structure in 
pure imaginary 

µ = iµI det�: Real !
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(det�(µ))�

= det�(�µ�)

If µ is pure imaginary

Phase	diagram	in	µI	region

Polyakov	loop

there	is	no	sign	problem.
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Imaginary	to	real	chemical	poten:al



Taylor Expansion 

Canonical Approach 

Density of State 

Complex Langevin

Many Approaches 
to Sign Problem
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Canonical Approach
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proposed by 
A.Hasenfratz and Toussaint in 1992  
to solve the sign problem. 
But it did not work. 
We traced the cause and solve it with 
multiple precision numerical calculations 



If

Tr e�(H�µN̂)/T

=
�

n

�n|e�(H�µN̂)/T |n�

=
�

n

�n|e�H/T |n� eµn/T

=
�

n

Zn(T )�n

Z(µ, T ) =

�
� � eµ/T

�

Fugacity

Z(µ, T )

22

Zn(T )
Grand Canonical Canonical

Canonical Approach



Personal History about Sign Problem
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A Reduction Formula for Wilson Fermions

Keitaro Nagata and Atsushi Nakamura 
    Phys. Rev. D82,094027 (arXiv:1009.2149)

A. Alexandru and U. Wenger  
Phys.Rev.D83:034502,2011 (arXiv:1009.2197)
 One more group

24

We were looking for

det� = detQ
Matrix       is smaller than� Q



For KS Fermions, the reduction formula 
was known.

 Gibbs Formula(*) 
• P.E.Gibbs, Phys.Lett. B172 (1986) 53-61
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z � e�µ

*) A similar formula was developped by Neuberger (1997)  
   for a chiral fermion and applied by Kikukawa(1998).  

det � = z�N

����
�B(�V )� z 1

�V 2 �z

����

=
����

⇥
BV 1
�V 2 0

⇤
� zI

����

= det (P � zI)
=

�
(�i � z) P

 P is                           
   (Matrix Reduction) 
 Determinant for any value of 

(2�Nc �Nx �Ny �Nz)2

µ
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The same matrix transformation like KS case cannot be 
employed, due to the fact that 

have no inverse, if the Wilson term               . 

Gibbs started to multiply     to the fermion matrix      . 
Instead, we multiply 
 
Here,  

are arbitary non-zero numbers.
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if we take the following trick,

where

Borici (2004)

After very long calculation (See Nagata-Nakamura 
arXiv:1009.2149), we get 



No Nt !
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matrix.

In case of KS matrix, the corresponding matrix is

(fugacity)

Diagonalize Q,



Z =
X

n

✓Z
DUCne

��SG

◆
⇠n

Z =

Z
DU det�e��SG

=
X

n

zn ⇠n

⇠ ⌘ eµ/T

Fugacity 
Expansion !



Fugacity Expansion

Inverse transformation:

A.Hasenfratz and Toussaint (1992)

Zn can be determined in imaginary     regions.µ

Z(µ, T ) : Grand Canonical Partition Function
 : Canonical Partition Function

Z(µ, T ) =
X

n

zn(T )(e
µ/T )n

zn(T )

Zn =

Z
d✓

2⇡
ei✓nZGC(✓ ⌘ Imµ

T
, T )zn

zn



This is Canonical approach by
A.Hasenfratz and Toussaint (1992)

It was known that this method does not work.

Why ???

In pure Imaginary     , there is no sign problem.µ



Check	by	an	analytic	method	(Winding	Number	Expansion)

32

A. Hasenfratz and D. Toussaint

Kentucky:	Winding	Number	Expansion	

Meng	et	al.,		2008

The	original	method	does	not	work		

due	to	numerical	errors.

Take	 and	do	the	Fourier	Trans.	analytically.
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Big Cancellation in FFT !

✓integration Multi-Precision (50 - 100)

S.Oka, arXiv:1511.04711 
Talk at LATTICE 2015

Fukuda, Nakamura,Oka,  
arXiv:1511.04711 
Phys.RevD93, 094508 (2016)



we had to solve 2 problems:

1.           is not a direct observable in lattice QCD

2.    We should perform simulations 
at many imaginary     points.

ZGC

µ

Zn =

Z
d✓

2⇡
ei✓nZGC(✓ ⌘ Imµ

T
, T )zn

Using Multiple-precision, we have beaten 
Sign Problem.

But to make Canonical Approach workable, 



nB =
1

3V
T

@

@µ
logZG

Integration Method

Then, for fixed T

Zk =
3

2⇡

Z +⇡/3

�⇡/3
d✓ exp

 
i k✓ +

Z ✓

0
nBd✓

0

!
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=
Nf

3N3
sNt

Z
DUe�SGTr��1 @�

@µ
det�

Z(✓ ⌘ µ

T
) = exp(V

Z ✓

0
nBd✓

0)

(For pure imaginary    ,            is also imaginary)µ nB

in imaginary  µ zn

zk

Not         but  ZG nB



 Multi-precision calculation 
 Integration Method

I thought we have beaten 
Sign Problem.

But !



Hidden Sign Problem ?

T/Tc = 0.93

T/Tc = 1.35

Pr
ob

ab
ili

ty

0 0.2-0.2
�

V.Goy et al., 
PTEP(2017) 031D01 

have phase on each configuration !Zn

zn ' |zn|ein�

Zn = hzni
are real 
positive.
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Z =

Z
DU (det�(µ))Nf e�SG

det�(µ) = det(1� Q(µ))

= e log(1�Q)

= exp

 
A0 +

X

n>0

[ein�Wn + e�in�W †
n]

!

= exp

 
A0 +

X

n

An cos(n�+ �n)

!

An ⌘ 2|Wn|
�n ⌘ arg(Wn)

W�n = Wn

Z 2⇡

0

d�

2⇡
e�ik�eA0+A1 cos(�+�1)+A1 cos(2�+�2)···

Where comes the phase of        ?zn
A.Li et al.(Kentucky), Phys.Rev.D82:054502,2010,  

arXiv:1005.4158 

We use

zn /
Then,



In(z) =
(�1)n

2⇡

Z 2⇡

0
ez cos te�intdt

Z 2⇡

0

d�

2⇡
e�ik�eA0+A1 cos(�+�1) = eA0

R 2⇡+�1
�1

d�0

2⇡ e�ik(�0��1)eA1 cos�0

= eA0+ik�1
R 2⇡+�1
�1

d�0

2⇡ e�ik�0
eA1 cos�0

= eA0+ik�1
R 2⇡
0

d�0

2⇡ e�ik�0
eA1 cos�0

= eA0+ik�1Ik(A1)

/ zk

In the lowest order,

where we use



A Remark of Function  Form 
of nB(µI)

is well approx- 
imated by  
sine function 
at T<Tc.

nB(µI)

Takahashi et al. Phy. Rev.  
D 91 (1) (2015) 014501. 
Bornyakov et al., Phys.Rev. 
D95, 094506 (2017) 

  

Preliminary
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We expand the number density as

nB/T
3 =

kmaxX

k=1

f3k sin(k✓)

nB/T
3 =

kmaxX

k=1

a2k�1✓
2k�1

✓ ⌘ µ

T

Confinement phase

DeConfinement phase

T < Tc

T > Tc

μ
Number density in Imaginary

Fittine functions are much more robust 
against the hidden sign problem, 
because a fitting curve include many points.



A Remark of Function  Form 
of nB(µI)

is well approx- 
imated by  
sine function 
at T<Tc.

nB(µI)

Takahashi et al. Phy. Rev.  
D 91 (1) (2015) 014501. 
Bornyakov et al., Phys.Rev. 
D95, 094506 (2017) 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A Remark of Function  Form 
of nB(µI)

is well approx- 
imated by  
sine function 
at T<Tc.

nB(µI)

Takahashi et al. Phy. Rev.  
D 91 (1) (2015) 014501. 
Bornyakov et al., Phys.Rev. 
D95, 094506 (2017) 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One sine



• Now we can say we have beaten Sign Problem 
for T>0 by Canonical Approach.



Experimental Data



STAR@RHIC

In 2012, at Wuhan

Prof.Nu Xu

Z(µ, T ) =
X

n

Zn(T )(e
µ/T )n
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This is Canonical !

We thank Prof.Nu Xu 
and Prof.Luo!



Experimental data and 
Fugacity Expansion

Z(µ, T ) =
X

n

Zn(T )(e
µ/T )nzn(T )



How to find QCD phase 
transition line ?

You combine Experimental data. 
It means you are in the confinement phase. 
So no chance to see the Phase transition.



Z(µ, T ) =
X

n

Zn(T )(e
µ/T )nzn(T )



 Information hidden in 
Fugacity Expansion ?

Z(µ, T ) =
X

n

Zn(T )(e
µ/T )n

T

µ

Experimentally

Determine               here. 
Then see QCD Phase  
at higher density !

Zn(T )
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zn(T )



Lee-Yang Zeros
Zeros of          in Complex Fugacity Plane.

Z(↵k) = 0

Great Idea to investigate 
a Statistical System

�
x
x
xx
x
x

Phase Transition

Z(�)

52

(1952)



Time consuming part is to solve  

 

Nikolai found a very fast algorithm. 
            Then, we can obtain results easily.
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Pre
lim

inary Wakayama
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What should we do next ?



Sign Problem is now solved for T>0, and  
it is time to analyze the finite density QCD.

But people do not know it.  Why ?
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It takes very 
 long time until 

your idea is understood.

But I use  
only Statistical  
Mechanics !?Because your 

Approach is 
different.



What should we do next ?

 Let the world to know that the Sign Problem was 
solved by Vladivostok group 

 Canonical approach + Multiple precision 
beat the sign problem 

 SU(2) can access large finite real  

 Long time ago, I observed a strange 
behavior of rho meson at finite 
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Muroya, Nakamura and Nonaka
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κ�=0.160

Pseudo-scalar
Vector

 = 0.160

µa

arXiv 0211010

Vector meson 
mass drops !

Phys. Lett. B551,(2003) pp305-310 

SU(2)4^3x8



 2+1 (u/d+s) Simulation because the s-quark 
effects cannot be neglected at finite temperature,  

(Tc ⇠ 200MeV)
ms ⇠ 100MeV

This simulation is very important  
for NICA and J-PARC.



 2+1 (u/d+s) Simulation because the s-quark 
effects cannot be neglected at finite temperature,  

(Tc ⇠ 200MeV)
ms ⇠ 100MeV

E.I.Zolotarev, “Application of elliptic functions to the questions of 
functions deviating least and most from zero”, Zap. Imp. Akad. Nauk. 
St. Petersburg, 30 (1877), no.5; reprinted in his Collected works, Vol.2, 
Izdat, Akad. Nauk SSSR, Moscow, 1932, p.1-59

Odd-flaver simulation

1p
x2

⇠ C
Y

n

x2 + an
x2 + bn

=
X cn

x2 + dn



OK, we explore the new 
world, Hadronic matter at 

Finite Density, with our Tool !
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